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An operator formalism for the calculation of intensities 
of allowed and forbidden hyperfine transitions in EPR 
spectra 
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Department of Physics, Concordia University, 1455 de Maisonneuve Boulevard West, 
Montreal, Quebec, Canada H3G 1M8 

Received 21 April 1989 

Abstract. Operator expressions involving only the components of the electron and nuclear 
spin operators have been derived. The squares of the absolute values of the matrix elements 
of these operators between the respective zero-order eigenfunctions yield the intensities 
of the allowed ( A M  = 1,  A m  = 0) and forbidden ( A M  = 1, A m  = "1, 1 2  and 
A M  = 2,  A m  = 0, 1 1) EPR hyperfine transitions. (Here M ,  m are the electronic and nuclear 
magnetic quantum numbers. respectively.) The resulting expressions for the EPR line inten- 
sities are thus quite straightforward to calculate. The spin Hamiltonian considered consists 
of the electronic Zeeman, zero-field and hyperfine terms, wherein the principal axes of the 
various tensors g, D and A, all assumed to be anisotropic, are considered to be non- 
coincident; the orientations of the external Zeeman and excitation microwave fields are 
assumed to be arbitrary. Intensity expressions for the various transitions are specifically 
given. The present results are compared with those published previously. (The present 
results can be used to calculate the intensities of EPR transitions of purely electronic systems 
also by excluding the nuclear part of the spin Hamiltonian.) 

1. Introduction 

It has been suggested (Misra 1979) that the intensities of magnetic resonance transitions, 
alone, or in conjunction with the line positions, can be simultaneously fitted in a least- 
squares procedure to evaluate the spin-Hamiltonian (SH) parameters. The positions and 
intensities of the forbidden hyperfine (HF) lines have been used by Korkmaz and Aktas 
(1984) to determine the quadrupole interaction parameters, and by Mialhe (1973) to 
estimate the nuclear g-tensor. The mechanisms responsible for forbidden HF transitions 
and the importance of HF forbidden transitions in dynamic nuclear polarisation, discrete 
saturation, phase transition and liquid and glass structures has been pointed out in a 
recent review article by Misra and Upreti (1987a), which also includes a literature survey 
on the subject of HF forbidden transitions. 

Forbidden hyperfine transitions (AM = 1, Am # 0; AM # 1, Am # 0) arise due to 
the admixing of nuclear states corresponding to different m-values. (Here M and m 
denote the electron and nuclear magnetic quantum numbers, respectively.) Bleaney 
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and Rubins (1961) derived intensity expressions for the cases AM = 1, A m  = 51, L2, 
+-3, while the cases AM = 1, A m  = +4, +5 were dealt with by Lupei et a1 (1972). 
These early investigations, based on perturbation theory, are inadequate because only 
admixing from the nearest-neighbouring eigenstates was taken into account in their 
derivation. More accurate expressions have been reported by Golding et a1 (1972) 
for the case AM = 1, A m  = 0, kl, 5 2 ,  and by Golding and Tennant (1974) for AM = 
2, A m  = 0, t l .  Fulton et a1 (1986) have described a diagram technique that can be used 
to calculate intensity expressions; however, they did not provide any specific expressions 
for the intensity of the HF transitions. Also, this technique does not appear to have been 
used by others. Bir (1964) calculated the angular variation of the EPR line intensity, 
assuming the HF interaction to be much smaller than the zero-field term, using the 
method of ‘effective magnetic field’. In his method, the axis of quantisation for nuclear 
spin was taken to be along the direction of the effective magnetic field at the nucleus 
created by the electrons, being different for different electronic states. Mialhe and 
Erbeia (1973a, b) adapted the theory of Bir to derive intensity expressions for the cases 
AM = 1, A m  = 0, +1. Their method consisted in expressing the admixture coefficients 
of the eigenstates in the form of operators so that the intensity of a magnetic resonance 
transition can be calculated to be proportional to the squared absolute value of their 
matrix element between the zero-order (unperturbed) eigenstates. An exhaustive, 
annotated review of the forbidden HF transitions has been given by Misra and Upreti 
(1987a). More recently, the subject has been reviewed briefly by Misra and Upreti 
(1987b) and by Weil(l987). 

There are, however, certain errors in the operator expression given by Mialhe 
(1973a). On the other hand, the intensity expressions given by Golding et a1 (1972) and 
Golding and Tennant (1974) are incomplete, in that the admixture of all the possible 
eigenstates has not been taken into account. Apart from this, their results for AM = 1, 
A m  = 5 2  and AM = 2, A m  = 0 are incorrect. Furthermore, they did not consider the 
case where the external Zeeman field is parallel to the microwave excitation field. 

The intensity of a magnetic resonance transition is proportional to the squared 
absolute value of the matrix element of the Hamiltonian representing the interaction of 
the excitation microwave field with the magnetic moment of the electron between the 
states participating in resonance. Thus, the calculation of intensity requires perturbed 
eigenfunctions. Consequently, the intensity expressions consist of a large number of 
matrix elements between the unperturbed eigenstates. Methods to keep track of the 
required non-zero matrix elements have been described by Misra and Upreti (1987b), 
and by Skinner and Weil(l978). 

It is the purpose of the present paper to describe a straightforward procedure to 
calculate the intensity of EPR lines by the use of operators that depend only on the 
components of the electron spin ( S )  and the nuclear spin ( I ) .  The operator expressions so 
derived in the present paper take into account complete admixtures of all the perturbed 
eigenstates up to second order. In order to compute the intensity using the operator 
expressions derived here, all one has to do is, then, simply to evaluate the matrix 
elements of these operators, which depend on the components of the operators S and I ,  
between the zero-order simultaneous eigenvectors of the components of S and I along 
their respective axes of quantisation. The orientations of the Zeeman and excitation 
fields have, here, been chosen to be arbitrary. The spin Hamiltonian considered consists 
of the electronic Zeeman, zero-field and HF terms, appropriate to lowest symmetry, i.e., 
triclinic. For higher symmetries, one can simply put the appropriate coefficients of those 
spin operators, which should be absent for the particular symmetry, equal to zero (see 
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Table 1. Non-vanishing zero-field operator coefficients 5: in the spin Hamiltonian for the 
various symmetries. Also included is the relationship between the principal values of the HF 
tensor. For monoclinic symmetry C2 represents the orientation of the twofold axis, while x ,  
y ,  z represent the magnetic axes. 

Cubic: 

Axial: 

Hexagonal: 

Tetragonal: 

Trigonal: 

Orthorhombic: 

Monoclinic 

Triclinic 

B: ,B:=552 ,54 ,=  - 2 1 B % ; A , = A , = A y  

B:, B t ,  B : ; A , , A ,  = A y  

B:, By, B:,  @ ; A , ,  A ,  = A ,  

58, By, B:,  B:, 5:; A , ,  A ,  = A ,  

B:, B Y ,  B:, B:,  B ; ,  566; A , ,  A ,  = A ,  

BF; k = 2 , 4 , 6 ;  0 s m (even) S k ; A , , A , , A ,  

BI(C, Ilx) = 5 p - l )  

Orthorhombic + B , ,  where B1(C, i ly)  = B2-I 
b,(C,I lz)  = BkZn 
r 

and k = 2 , 4 , 6 ;  1 S n < k /2 ;A , ,  A,  = A, 

5:; k = 2 , 4 , 6 ;  -k  S q S k;  A , ,  A, ,  A,. 

table 1). Nuclear Zeeman interaction can easily be taken into account by defining an 
equivalent HF term (Weil and Anderson 1961, Iwasaki 1974). The axis of quantisation 
for I is assumed to be along the conventionally chosen direction (Abragam and Bleaney 
1970, Rockenbauer and Simon 1974), namely, along the effective magnetic field direc- 
tion at the nucleus (Orton 1968). The extended Stevens spin operators 0; (Rudowicz 
1985a), including those with q < 0, have been used to describe the zero-field part of the 
electronic spin Hamiltonian. The required matrix elements of the components of S and 
I can be easily evaluated, e.g., by utilising the tables listed by Al'tshuler and Kozyrev 
(1974). 

Section 2 deals with the spin Hamiltonian, as well as its second-order perturbed 
eigenfunctions required for the evaluation of the operators for the calculation of the 
intensity. The expressions of the operators required to calculate the EPR line intensity 
are derived in § 3. Specific expressions for the EPR line intensities are developed in § 4 
for a few illustrative examples. A comparison of the results derived here with the 
previously reported expressions is presented in § 5 .  Concluding remarks are made in 
9 6.  

2. The spin Hamiltonian and its second-order perturbed eigenfunctions 

The following spin Hamiltonian, consisting of the Zeeman (Xz), zero-field (XzF) and 
the hyperfine (XHF) terms, is considered: 

X = Xz + XzF + X H F  

where 
Xz = p B S T * g * B  X H F  = ST * A * I  

k 

k q = - k  
( k  even, s 2s). 
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In (l), the superscript T represents the transpose of a matrix, B is the external Zeeman 
field; pB is the Bohr magneton; g, A, BZ are the usual SH parameters and 0; are the 
extended Stevens operators (Rudowicz 1985a). The relations between the conventional 
Stevens operators ( U T ) ,  the tensor operators (T;”) of Buckmaster et a1 (1972) and the 
0: operators, used in (l), have been given by Rudowicz (1985b, 1987) and their 
transformations under rotations are listed by Rudowicz (1985a). The curly brackets 
around the parameters and spin operators in Xz,in (1) indicate that they are expressed 
in an original coordinate system. 

It is found convenient to use special, different quantisation axes for the electron 
and nuclear spin operators (Iwasaki 1974, Rockenbauer and Simon 1974). These are 
obtained from the laboratory axes via multiplication by the matrix R to give a new set of 
axes ( E ,  q ,  c) for the electron spin: 

{SI = R[SI&g (2) 

{ I }  = R’[I]yrl,C,. (3) 

and by the matrix R’ to give the set of axes ( E ‘ ,  q’,  5’)  for the nuclear spin: 

In the choice of the axes ( E ,  q ,  5 )  and ( E ’ ,  q’ ,  C‘), the axis of quantisation for S is chosen 
to be along 

l =  bT * g/g (4) 

and that for Z along 

l1 = 6’ * g * A/gK. (5) 

In (4) and ( 5 )  a caret denotes a unit vector, 

(6) 6 = B/B  g 2  = b T  . S T .  g - b  g2K2 = b .  g T  . AT . A .  g . b .  

The transformed spin Hamiltonian can finally be expressed as a sum of zero-order 
Hamiltonian (X,) and a perturbation ( X I ) ,  treating the electronic Zeeman term as 
diagonal, as follows: 

x = Xse, + a f t  (7) 

(8) 

where 

x0 = pBHg[sC] + [B:] [O! l  + [ B ! l [ O ! l  + [ B ~ l [ O ~ l  + KIS;I[z;Jl 
and 

2 4 6 

+ Q[s+][l+] + Q*[s-I[I-I + R[S+I[I-I + R*[S-I[I+I.  (9) 

In (9), the prime on the summations indicates that the terms with q = 0 have been 
omitted, while the asterisk indicates complex conjugate, 

S,  = SE i is, I ,  = I E ’  ? iZq8 
pp* = a ( b T .  g T  . AT, A - AT. A .  g b/g2K2 - K2) 

(10) 
QQ* = h[Tr(AT A) - bT . gT . AT A - AT - A g b/g2K2 - (2/K) det(A)] 

RR* = &[Tr(AT A) - bT - g T  e AT A - AT A g * b/g2K2 + (2/K) det(A)]. 
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The square brackets in (8) and (9) represent the spin operators and their coefficients 
in the transformed system of axes: ( E ,  q ,  c) for electron spin and ( E ' ,  q ' ,  c') for nuclear 
spin. 

The second-order normalised perturbed eigenfunctions of "de, given by (7), can now 
be expressed as (Golding 1969) 

(11) 

where N ,  n are positive integers and the prime on the summation sign indicates that the 
term with N = n = 0 has been omitted. IM', m')O are the zero-order (unperturbed) 
eigenvectors of X o ,  the a-term in the first bracket in (11) is required for normalisation, 
and the cs in (11) are the admixing coefficients of the participating zero-order states of 
S, and Z,,: S,IM, m)O = M/M,m)O; Zc,IM,m)') = mlM, m)'), and are given by 

IM, m>=(l+a~,",m+n)lM,m)O+ E' c ~ g m , , , ~ ~ / ~ + ~ ,  m-+n)O 
N ,  n 

In (12) and (13), 

The prime on the summation sign in (12) and (13) indicates that the term with M'  = M ,  
m' = m is to be omitted. The matrix elements required in (12) and (13) can be evaluated 
using the methods described by Misra and Upreti (1987b), or Skinner and Weil(1978), 
and the relation (Vrehen and Volger 1965) 

O(M'I[O~~]~M)O = * i O(M'1[04,])M)O, (16) 
wherein the upper (+) and lower (-) signs apply to M' < M ,  M'  > M ,  respectively. The 
values of some of the important admixture coefficients are given below: 
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3. An operator for the calculation of the intensity of magnetic resonance transitions 

The central idea behind the formulation of an operator to calculate the intensities of 
magnetic resonance transitions is based on the premise that the perturbed eigenstates 
lM,  m) can be expressed in terms of the zero-order eigenstates lM,  m)' as follows: 

lM, m> = 9 M . m  lM, m>O (19) 

where the operator $ M , m  can be derived using the fact that in the expressions for the 
perturbed eigenstates, equations (11)-(16), one can write 

Combining (1 l), (19) and (20), one obtains 

where 

The prime on the summation sign in (21) indicates that the term N = n = 0 is excluded. 
The coefficients c:::, are given by (12) and (13), and the denominators S, and Zl, are 
defined by (18). 

The intensity, ZM,m;M',m,, of the transition between the perturbed states IM', m')  and 
IM, m) is proportional to the square of the absolute value of the matrix element of the 
Hamiltonian, Ye,,,, describing the interaction of the electron magnetic moment with the 
excitation microwave field, i.e. 

I M , m ; M ' , m '  = rcI(M', m'IxexclM, m)I2 

Yeexc = pBST * g * B , .  

(23) 

(24) 

where 3'C is a constant, and 

In (24), B1 is the amplitude of the excitation microwave magnetic field ( = B1 cos ut). 
Equation (23) can be expressed in terms of the zero-order eigenstates, using (19) 

and the expression for the bra vector 

( M ' ,  m ' J  = O(M', "I$& (25) 
derived from the form of the ket vector IM, m) given by (19). The expression for the 
operator jjM',m, can be written in the same way as that for $ M , m ,  which is given by (21). 
In (25 ) ,  T denotes the adjoint of an operator. 
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Finally, 

( M ' ,  m' IXeexc lM, m> = ' ( M ' ,  " / $ L ' , m ' x e x c $ M . m  IM, m>'. (26) 
From (26), the operator whose squared absolute value of matrix-element is pro- 

portional to the intensity of the magnetic resonance line, is 

9M,m;M' ,m '  = $ L ' , m '  Xe,xc$ M ,  m . (27) 
Equation (27)  is the formal expression for the operator, 9"M,m;M,,mf .  It can be re- 

written in terms of the raising and lowering operators, s+ and s-, as 

gM,m;M'.m' =pB[f(rT ' ' B l ) ( $ L ' , m ' s + $ M , m )  -k 6(lT ' ' B l ) ( $ L ' , m ' s - $ M , m )  

+ (i" ' ' B l ) ( $ b ' , m ' s [ $ M , m ) l  (28) 

r = t - i i j  I = j. + i i j .  (29) 

where 

In (29) 8 and i j  are the unit vectors along the 5 and q axes, respectively. 
Thus, in order to calculate the EPR line intensity, all one has to do is to evaluate 

the matrix element of the operator 9"M,m;M,m8,  given by (28), between the zero-order 
simultaneous eigenvectors of S, and Z,,, IM', m')' and lM,  m)'. 

To simplify the evaluation of the Emline intensity for an arbitrary relative orientation 
of the external Zeeman and microwave excitation fields, it is convenient to express the 
intensity given by (23) as 

IM,m;M'.m'  = rc 2 aaflwap (a,B = +, - and c)  (30) 
f f .B  

where 

= ' ( M ,  m 1 ($ b , m ' s a $  M, m )  ' I M' , ">O0(M' 9 m' 1 %  L', m ' s p $  M ,  m 1 M ,  m)' (31) 
and 

a+ = f r  a- = 6 1  ci, = 5. (33) 

4. An illustrative example 

Specific expressions for the intensity operator 9M,m;M,,m8 will now be given for the 
various transitions. The evaluation of 9M,m;Mr,m, will first be illustrated for the case of 
the allowed HF transition M - 1, m - M ,  m; using similar procedures expressions for 
9M,m;M,,mf can be obtained for the forbidden HF transitions. 

The calculation involves the evaluation of $ L - l , m S a 9 M , m ;  cx = +, - and i;. Using 
(11) and (20) it is easily seen that 

$ M , m  = 1 + a$: + CE;Y,~S+ + CE:',,S- + CE$!,mS:+ C$3,,S2 

+ ( C t $ G , m + l S +  + C $ T , m + l s -  + C i $ , z + l ) Z +  + (C$Z,m-lS+ 
+ C t $ - ! , m - l s -  + cg;;-l)z- (34) 
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M-1," s+ + c M - 1 , m * ~ 2  3 h - l , m  = 1 + a M - l , m  + C;;i"*S- + CM-l sm*;  M-2,m M+l.m - 

+ c M - l , m * ~ Z  + ( ~ M - l . m * s  + c M - 1  m' M-1 m* 
M-3,m + M,m+l - ~ - 2 : m + l S +  + C M - l : m + l ) Z -  

(35) M - l , m * S -  + c M - l : m *  s + CM-1," + ( C M . m - 1  M - 2  m-1 + M - I , ~ - I ) ~ + .  

Finally, one has, for use in (30) and (31), 

and 

$L- l , m S ( $ M ,  m - - ( 1  + a M - l , m ' ) c M , m  M - l , m  M - l , m S c S -  + C ~ ~ ~ ~ m * ( ~  +a!:;)S-S,  
+ cM-1.m' CM m s s s2 + C M - l , m * C M  m 

M-2.m M'2.m + 5 M+l ,m  M'+1,ms2s,s+ 

+ ( C M , m + l  M . m + l S - S <  f C M - l : m + l  M - l , m + l S C S - ) I - I +  

+ (CM,TAL?* c::;-ls-s, + CM.I-I:m-l M - 1  m' C ; L ! , m - l S , S - ) z + z - .  

M-1.m' C M , m  M - 1  m* C M , m  

(38) 
The expressions for the operator 9 L, m r  Sn$M,m similarly calculated for the forbidden 

(i) Transition M - 2,  m fs M, m: 
transitions are given below. 

$ L - 2 . m S + $ M , m  = c:._m,,ms+s3 + c;::;;* c ; L ! , , s - s + s '  

(39a) + c M - 2 , m *  C M , m  2 s s + c M - 2 , m * ~ 3  s 
M,m M - l , m S -  + - M+l ,m - + 

- c M , m  s2_ + c M - 2 , m * ~ 2  + c M - 2  m " C M , m  
9 L - 2 , m S - $ M , m  - M - l , m  M-1.m - M-3:m M-2,ms+s3 

+ c M - 2 , m "  C M  M-2.m* C M , m  

+ c ~ ~ $ , ~ : I  C E L ! , m + l  s?)r-l, + ( C M - 1 , m - l  M-2,mi C M , m  M , m - l S !  

M.m M;?,ms3s+ + ( C M - l , m + l  M , m + l S 2  

+ cM,r$,;:l cM,._",,m-Is2)z+z-. (39b) 
$ k - 2 , m s , $ M , m  = c : L T , m s , s z  + c::;TY,s2 + c:I:$* c,MLy , ,S , sZ  

+ cM-2.m' 
M -  1, m + 1 c3-7, m+ 1 6 s2 I -  I +  

+ c$I:$ll c ~ _ " l . m ~ l s * s l z + z ~ .  (39c) 
(ii) Transition M - 2, m + I fs M ,  m: 

s $ L - Z , m + l S + $ M . m  = ( C g " 3 , m + l  + M ,  m+ 1 M'- 1 ,  m+ 1 s2 s+ s- s3 + c M - Z , m + l *  C M  m 

+ c : I : ; ; + l ' c : ' ! , m s - s + s l  + c;;:;~+'*s3s+)z+. (40a) 
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s2 + c M - 2 , m + l *  C M  m B L - 2 ,  m+ 1 S - B M,m = ( C E L Y , m +  1 M- l ,m+l  M : m + l S Z  

+ c M - 2 . m + l e c M , m  S ~ S +  + c M - 2 , m + l * c M s m  
M,m+l M+l .m+l  M-3.m M-2.ms+s3 

+ c M - 2 . m + l *  s2 + cM-2 m+l' C M  m 
M-1.m - M-2:m ML1 ,mS2)z+  

+ cg:;;;+;* c ;~ ! , " l~ l s2z~z~ .  
s s2 + c M - 2 , m + l *  C M  m 

M .  m+l M.m+ 1 M-1.m ~ - 1 , m s - s ~ S -  

M-2:m Mi2,ms<s2 + cM,m - 5 )  + '  

B L 2 , m + l S 6 $ M , m  =(C%-?.m+l f M- l , m + l  M L  l ,m+l S-SCS-  
+ cM-2 .m+1*  C M , m  

+ cM-2 m+l* C M  m M - 2 , m + l * ~ 2  s I 

s2_s, + c M - 2 , m + l ' c M , m  

9491 
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5. Comparison with previous results 

In order to compare the present results with those reported previously, computed by 
the use of perturbed wavefunctions by Golding et a1 (1972), Golding and Tennant (1974), 
Mialhe and Erbeia (1973a) and Mialhe and Quedec (1976) (hereafter referred to as G I ,  
G2, MI  and M2, respectively) the intensities were calculated for the various possible 
transitions using (30).  GI and G2 used the (conventional) direction bT * g A as the axis 
of quantisation for the nuclear spin, whereas MI  and ~2 used the direction of the effective 
magnetic field, which is different for different electronic states, defined by 

Btff = c. (PngJ1A ,p (MISnIM)  a, p = x , y ,  2 
n 

as the axis of quantisation for the nuclear spin. 
The intensities are now calculated, for the case where the microwave excitation field 

( B , )  is perpendicular to the Zeeman field ( B ) ,  using (30), assuming the principal axes of 
g, D and A tensors to be coincident and assumimg an axial g tensor for the allowed 
transitions and an isotropic g tensor for the forbidden transitions, in accordance with 
those used previously (GI ,  G2, M I ,  and M2). The explicit intensity expressions are listed 
as follows: 

(i) A M  = I ,  Am = 0 

1 M .  m; M -  1. m = x I ' ( M  - 1 9  m 19 IM, m>O I 

where 7C is a constant of proportionality. 

(ii) A M  = I ,  lAml = I 
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Ap [ ( S ( S +  1;--3M2) 
4 G  

x[S(S+l ) -M2+M-l ]  -2 

- (1 - a M - l . m + l *  )(S(S+1)-3M2)] -- AA 
M 2G2 M - l . m + l  

Ap [ 4G2 
/ S ( S  + 1;- 3M2) x ( 2 M -  l)[S(S+ 1) - M 2  + M -51 +- 

S(S + 1) - 3(M - 1 ) 2  ( M-1 
+ S?,, - 2  

(iii) A M  = I ,  [ A m i  = 2 

S ( S +  1) -3(M- l)')(S(S+ 1) - 3M2) l 2  
M 

jS(S + i- 3M2 R2 2 ) - 2 G ' [ S ( S  + 1) - M 2  + 3 M ] ]  . 

(49) 



An operator formalism for EPR line intensity 9495 

x - ( Q - R ) ( S ~ , ,  + s ? ~ , - ~  
{2:2 

2G2K M 
R 
G 

+ 7 (20 - K )  + 

In (46)-(53) gll, g,, D, A ,  B are the usual SH parameters, 8 is the angle between the 
Zeeman field and the principal magnetic z axis and 

A =  Dsin  'p cos 9, g 2  K2 = gfA2 cos2 8 + g: B2 sin2 8 

D 
4 p=-ssin2q 

g1 B(A - K )  B(A + K )  

811 4K 
R =  4K 

tan 'p =-tan 8 

c$:+~ = - (Z, , , /GKM)[(Q+R){A[S(S+ 1 )  -3M2] -2PMm) 

+ P(%, 1 Q - Si, -1R)I 
c $ : - ~  = ( Z ~ , - , / G K M ) [ ( Q  +R){A[s(s+ I) - 3 ~ ~ 1  - 2 ~ ~ m )  

+ P(%, -1 Q - Si, iR)B 
a M , m  M,m - -(1/8G2){Si,l[A(2M+1)+2Pm]2 + S i , - l [ A ( 2 M -  1)+2PmI2 

+ p2(S8,1S?,, +Si, -1St1, - 2 )  + 4Q2(Si , lG,  1 + Si, - 1 G ,  - 1 )  

+ 4R2(S;, 1 G ,  -1 +Si, -1% 1 ) ) .  (54) 

The above results, given by (46)-(53), are now compared with those published 
previously (GI, ~ 2 ,  ~1 and ~ 2 ) .  A detailed comparison with G i  and G2 is entirely possible 
because the axis of quantisation for Z used there is the same as that used in the present 
paper. Comparison with MI,  ~ 2 c a n  be made only for the transitions A M  = 1, Am = 0;  
AM = 2, Am = 0,  because, as remarked earlier, the axis of quantisation for Z used here 
is not the same as that used in MI and ~ 2 .  It is to be noted that several extra terms appear 
in the intensity expressions given by (46)-(53) of the present paper, over and above 
those given by GI and ~ 2 .  It is further to be noted that, contrary to what is stated in GI  
and ~ 2 ,  the intensity of the transition M ' ,  m + n ++ M ,  m is not, in fact, equal to that for 
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the transition M ' ,  m - n CJ M ,  m. With this general observation, detailed comparison 
of the present results with those of GI ,  ~ 2 ,  MI and ~2 is given below. 

(i) AM = I ,  A m  = 0. The present result is in agreement with that of GI,  except for 
the absence of six important second-order terms in GI,  caused by some possible admixing 
coefficients not being considered in GI.  The following terms in the present paper are 
absent in GI: 

As for M I ,  their intensity expression is incorrect, since the operator expression in MI 
is not correct. For, the intensity, calculated using the operator given in MI,  does not 
simplify to the result of Bir (1964) for the case where the HF interaction is zero. This was 
further confirmed by an independent calculation, in which the axis of quantisation for Z 
was chosen to be the same as that used in MI, namely, that along the effective magnetic 
field at the nuclear site. The correct operator expression of MI should have been: 

(1 + (p/G)(2S, - 1) + (A2A2B2/2G2K4) 

x [Si' (S, - 1)-'(3S: - S2)(3Sf - 6S, - S 2  + 3)](Z2 - Zt,) 

- (A2A2B2/4G2K4)[Si2(3Sf - S 2 ) 2  

+ (S, - 1)-2(3Si -6S, - S 2  +3)2](Z2 -Z;f) 

- (A2/G2)(S2 + 3Sf - 3S,) - (p2/G2)(S2 - 3Sf + 3S, - 3))s.. 

The fourth term of the above expression does not appear in (46) of the present paper. 
This occurs due to the use of a different axis of quantisation for Z in MI  from that used in 
the present paper; the latter is described by ( 5 ) .  

(ii) AM = I ,  A m  = +l. The present result given by (47) agrees completely with that 

(iii) AM = I ,  A m  = - I .  The present result is not in agreement with that of GI,  
wherein ZM,m;M- l ,m+l  = Z M , m ; M - l , m - l .  This is because four extra terms that contribute 
in second order were omitted by GI.  

(iv) A M  = I ,  A m  = +2. The result of GI is incorrect; the factor of four in GI  should 
not be present in the numerator. 

(v) A M  = I ,  A m  = -2 .  The present result is not in agreement with that of GI.  In 
addition to a missing factor of four in the numerator in GI,  the term 

Of G1. 

-So,-1Zo,11,,2(R2/2G2)[S(S + 1) - M 2  + 3M] 

of the present paper is absent in GI. 
(vi) A M  = 2, A m  = 0. The factor of 8 in the denominator in ~2 of the second-order 

terms should be 16. Moreover, not all the second-order admixture coefficients have 
been taken into account. The present result is, however, in agreement with that of M2, 
except that the last term of (51) of the present paper is absent in ~ 2 .  This is because the 
axis of quantisation for Z in the present paper is different from that used in M2. 
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(vii) A M  = 2, Am = +I .  G2 is incorrect. Only some of the second-order admixture 
coefficients have been taken into account; also, in G2, the sign of the term in aA (in the 
notation of ~ 2 )  is incorrect. 

(viii) A M  = 2, Am = -1. Within limits of the approximations used, according to ~ 2 ,  

Z M , m ,  M - 2 ,  m+ # Z.w,m, M - 2 , m -  The result in the present paper, in which all the second- 
order admixture coefficients are considered, agrees only with this finding of GZ; the 
intensity expression of G2 for this case does not agree with the present result, given by 

(ix) Diagram technique. A technique involving the use of diagrams, which represent 
the various mathematical symbols and operators, to evaluate the admixture coefficients 

described by Skinner and Weil (1976, 1978) and by Fulton et a1 (1986, 1988). An 
advantage of this technique is that the various non-zero terms required for the calculation 
of the intensity can be identified in a systematic way. An apparent drawback of 
this method is that it takes a great deal of effort to learn-much more than is 
required for using the formalism proposed in- the present paper. Furthermore, in 
spite of the modifications proposed by the authors, very similar diagrams are used 
to represent the matrix elements ( M +  l,mlS,S;IM,m), ( M +  l,mlScS+IM,m), and 
( M  + 1, mlS+Z5,1M, m),  which can lead to confusion. No specific intensity expressions 
were given by Fulton er a1 (1986), other than for the allowed transition M ,  m * M - 1, m, 
which is proportional to [S(S + 1) - M ( M  - 1)j. It was, therefore, not possible to 
compare the present results with those of Fulton et a1 (1986). However, the diagram 
technique was used by Skinner and Weil(l976) to determine specifically the third-order 
perturbed energy for the simple Hamiltonian X = pBST * g - B + S' * A . 1. The same 
energy calculated to third order in perturbation using the quantum mechanical pre- 
scription, as in the present paper, yielded the last term in (27) of Skinner and Weil 
(1976) to be - K ( k 2  - K2)Mm3 instead of K(k2  - K2)[S(S + 1) - M2]m3. A further 
discrepancy is found in (20.4) of Skinner and Weil(1976), which should be corrected to 
read 

(53) .  

c,,, ;~,~~~ M m  required in the perturbation expressions, and the coefficients amp,  has been 

6 Det(A,,) = 2 Tr[A,,Adj(A,,)]. 

6. Concluding remarks 

Operator expressions have been developed in the present paper to calculate the inten- 
sities of the allowed and forbidden EPRHF transitions: AM = 1, Am = 0, 21, +2 and 
A M  = 2, Am = 0, +1. These operator expressions are completely general, in that they 
can be used for the lowest symmetry and for arbitrary orientation of the external Zeeman 
field with respect to the excitation microwave field. The non-zero coefficients of the 
operators in the spin Hamiltonian conforming to specific symmetries are listed in table 
1. The intensity operator is straightforward to use since all that one has to do here is to 
calculate its matrix elements with respect to the zero-order eigenstates corresponding 
to the (perturbed) eigenstates participating in the resonance. Using these general oper- 
ators, explicit intensity expressions have been derived for the various commonly 
observed EPR transitions. The limitations as well as errors/omissions of the previously 
derived expressions have been discussed. By excluding the nuclear interaction terms in 
the spin Hamiltonian, the present results can be reduced to calculate the intensities of 
purely electronic transitions. 
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